
Efficient Path Signature Features

Candidate number 1053510

University of Oxford

CCD Mathematics Dissertation
Word count: 7494 (TeXcount, all words)

Part C Mathematics

Trinity Term 2024



Abstract

When path signatures are used to construct features for machine learning
tasks on streamed data, a common approach is to segment the path
and compute truncated signatures over each subpath. Choosing the
truncation level and the family of subpaths has previously been done in
an ad-hoc manner. Finding a feature set which captures enough detail
about the paths while not being too high-dimensional involves a trade-off
between the truncation level and the number of subpaths.

We study this trade-off from a theoretical and an empirical perspective.
For the task of approximating solutions to linear controlled differential
equations, we compute error bounds which suggest that in some set-
tings (e.g. when the paths lie in higher dimensional spaces), feature sets
which use lower-level signatures over a greater number of subpaths can
be more efficient than ones using higher-order signatures. Furthermore,
the theory suggests splitting the path not by equal time increments, as
is common, but by equal 1-variation. This simple modification substan-
tially increases test accuracy on a real dataset.
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1 Introduction

The signature of a bounded variation path is a collection of all the iterated integrals
of the path against itself. While the study of such iterated integrals dates back
to the mid-20th century [Che54], in recent years they have found applications in
machine learning as a feature transformation for path-like data.

To produce a finite feature set, the signature, which takes values in an infinite-
dimensional graded vector space, must be truncated. As the truncation level in-
creases, the size of the truncated signature increases exponentially, so in practice
typically only the first few levels are used. To capture further information, previ-
ous works (e.g. [Yan+16; Mor+19; Yan+22]) take truncated signature features over
multiple, possibly overlapping, subpaths.

Considering a particular feature set of this form, with truncated signatures taken
over the subintervals of a partition of the time domain, one can ask: given a de-
sired level of expressivity, which choice of truncation level and partition minimises
the dimensionality of the feature set? Increasing either the truncation level or the
number of subintervals will increase the feature size, so there is a trade-off between
these parameters.

The purpose of this dissertation is to explore this trade-off, and how best to choose
the subpaths. This problem has not been previously studied in the literature. While
[Mor+20] compares the performance of different ways of partitioning the path, they
do not focus on the size of the feature set.

From a theoretical perspective, we compute an error bound for an approximation
scheme for solutions to linear CDEs which uses truncated signatures over subinter-
vals, which allows for the comparison of different feature sets. We find that it is
optimal to split the path not into equal time intervals, but rather into subpaths
of equal 1-variation. In empirical tests, we train simple machine learning mod-
els and examine their generalisation performance, using both synthetic and real
datasets.

In Sections 2 and 3 we provide a tailored overview of some background material on
the theory of rough paths and path signatures. In Section 4 we discuss the use of
path signatures in machine learning, and the trade-off we are interested in. In the
remainder of the dissertation, we present our attempts to understand the trade-off
and the optimal choice of partition: in Section 5 we present our analysis of error
bounds for approximations of solutions to CDEs, and in Section 6 we present our
empirical tests. Finally, in Section 7 we draw some conclusions.

2 Rough path theory

The goal which rough path theory achieves is to make sense of differential equations
driven by paths with low regularity, by enhancing the driving path with additional
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data. In this section, we establish notation and cover some background material from
the theory of rough paths. We follow the approach originally developed by Lyons
[Lyo98], and exposited in [LCL07], and we draw heavily from these two sources in
this section and in Section 3.

Let V denote a real Banach space with dim(V ) = d <∞.

2.1 Controlled differential equations

Definition 2.1 (p-variation of a path [LCL07, Definition 1.5]). For p ≥ 1 and
X : [0, T ]→ V a continuous path, define the p-variation of X to be

∥X∥p,[0,T ] =

(
sup
D

r−1∑
i=0

∥∥xti+1
− xti

∥∥p) 1
p

where the sup is over all partitions D = (t0, . . . , tr) of [0, T ]. It is not required
that mesh → 0 as n → ∞. Let Vp([0, T ], V )) denote the space of continuous paths
[0, T ] → V of finite p-variation. Paths of finite 1-variation are also called bounded
variation paths.

Definition 2.2 (Controlled differential equation). Let V,W be Banach spaces, let
X : [0, T ]→ V and Y : [0, T ]→ W be continuous paths, and let f : W → L(V,W )
be a continuous map from W to the Banach space of bounded linear maps V → W .
Then Y is said to satisfy the controlled differential equation (CDE)

dYt = f(Yt)dXt, Y0 = y0 (1)

if

Yt = y0 +

∫ t

0

f(Ys)dXs (2)

for a suitable notion of integral. The map f is called the vector field, and X is called
the driving process. If f is linear, that is, f ∈ L(W,L(V,W )), then we call (1) a
linear CDE.

Remark 2.3. For paths of finite 1-variation, the integral in (2) can be taken to be
the usual Lebesgue-Stieltjes integral. For paths of finite p-variation, with 1 ≤ p < 2,
the Young integral can be used – see [LCL07, Section 1.3].

Theorem 2.4 (Picard-Lindelöf [LCL07, Theorem 1.3]). If X is a bounded variation
path and f is Lipschitz continuous, then the CDE (1) has a unique solution.

The proof of this theorem uses the Picard iteration, just as for the ODE case.
Following [LCL07, Section 2.1], we now calculate two Picard iterations in the case
that f is linear and bounded, to show how iterated integrals of X arise. The linear
map f : W → L(V,W ) can also be considered as a bilinear map V ×W → W , or a

5



linear map V → L(W,W ). With this in mind, in the following we freely switch the
order of the arguments of f .

Y
(0)
t : = y0.

Y
(1)
t : = y0 +

∫ t

0

f(Y (0)
u1

)dXu1

= y0 +

∫ t

0

f(y0)dXu1

= y0 +

Å∫ t

0

f(dXu1)

ã
(y0).

Y
(2)
t : = y0 +

∫ t

0

f(Y (1)
u2

)dXu2

= y0 +

∫ u2=t

u2=0

f

Å
y0 +

Å∫ u1=u2

u1=0

f(dXu1)

ã
(y0)

ã
dXu2

= y0 +

Å∫ t

0

f(dXu)

ã
(y0) +

Ñ ∫
0≤u1≤u2≤t

f(dXu2) ◦ f(dXu1)

é
(y0).

Now let V ⊗k denote V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

, and define f⊗k : V ⊗k → L(W,W ) by

f⊗k(x1 ⊗ · · · ⊗ xk) = f(xk) ◦ · · · ◦ f(x1) (3)

for x1, . . . , xk ∈ V , extending by linearity to a map on V ⊗k. Note the order reversal,
and the fact that f(x1), . . . , f(xk) ∈ L(W,W ).

We further define ∫
0<t1<t2<···<tk<T

dXt1 ⊗ dXt2 ⊗ . . .⊗ dXtk

to be the iterated integrals of Xt, arranged to form a tensor in V ⊗k. To be pre-
cise,∫
0<t1<···<tk<T

dXt1⊗ . . .⊗dXtk =
d∑

i1,...,ik=1

Ñ ∫
0<t1<···<tk<T

dX i1
t1 · · · dX

ik
tk

é
ei1⊗· · ·⊗eik .

(4)

Then we can write the Picard iterates as functions of the iterated integrals, for
example:

Y
(2)
t =

Ñ
I + f

Ñ ∫
0<u1<t

dXu1

é
+ f⊗2

Ñ ∫
0<u1<u2<t

dXu1 ⊗ dXu2

éé
(y0). (5)
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2.2 The tensor algebra

Definition 2.5. The space of formal series of tensors of V is

T ((V )) = {(a0, a1, a2, . . .) : an ∈ V ⊗n for all n}.

Take x,y ∈ T ((V )). An associative product can be defined by

(x⊗ y)k =
k∑

i=0

xi ⊗ yk−i (6)

where the superscript k denotes the tensor at index k ≥ 0.

Definition 2.6. The tensor algebra over V is

T (V ) = R⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · ·

which can also be equipped with the product given by Equation (6).

While T ((V )) has elements that are infinite sequences of tensors, elements of the
tensor algebra T (V ) are finite sequences of tensors.

Definition 2.7. Let T̃ ((V )) be the affine subspace of T ((V )) where the first entry
is always 1, that is,

T̃ ((V )) = {(x0, x1, x2, . . .) ∈ T ((V )) : x0 = 1}.

When equipped with the product ⊗, the space T̃ ((V )) becomes a group.

Definition 2.8 (Truncated tensor algebra). The truncated tensor algebra at order
n ≥ 0 is

T (n)(V ) = R⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n.

The product ⊗ is also defined on T (n)(V ), by (6) for 0 ≤ k ≤ n.

We shall use bold letters to indicate elements of T ((V )), T (V ), or truncated tensor
algebras.

Definition 2.9 (Canonical projection map). For n ≥ 0, define the canonical pro-
jection map

πn : T ((V ))→ T (n)(V ), (x0, x1, . . .) 7→ (x0, x1, . . . , xn).

We also use πn to denote the same projection from T (m)(V )→ T (n)(V ) when m ≥ n.

Proposition 2.10. If dim(V ) = d,

dim
Ä
T (n)(V )

ä
=

dn+1 − 1

d− 1
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Proof. Take a basis {e1, . . . , ed} of V . This naturally gives a basis for V ⊗k for all
k ≥ 1, consisting of the dk tensors ei1 ⊗ · · · ⊗ eik , i1, . . . , ik ∈ {1, . . . , d}. Trivially,
{1} is a basis for R = V ⊗0. Taking the union of these bases for 0 ≤ k ≤ n,
embedded in T (n)(V ), gives a basis for T (n)(V ). This basis contains

∑n
i=0 d

i = dn+1−1
d−1

elements.

Once a basis of V is chosen, one can index coefficients of an element of T ((V )) using
words on an alphabet A of size dim(V ). Let A∗ denote the set of all words on A,
including the empty word ε. For example, if A = {a, b}, then

A∗ = {ε, a, b, aa, ab, bb, aaa, . . .}.

If V has dimension 2 with basis ea, eb, then a word w ∈ A∗ corresponds to a basis
element of T ((V )), e.g. aba↔ ea ⊗ eb ⊗ ea.

Definition 2.11. Given a word w and x ∈ T ((V )), or x ∈ T (n)(V ) where |w| ≤ n,
then xw denotes the coefficient indexed by the word w.

Recall that V is a normed space. Following [LCL07], we assume that the V ⊗k are
also equipped with norms which satisfy the following properties.

Definition 2.12 (Admissible norms [LCL07, Definition 1.25]). A family of norms
on the spaces V ⊗k, k ≥ 0, is called admissible if:

1. The norms are all symmetric: for all k ≥ 1, for all x ∈ V ⊗k and all permuta-
tions σ ∈ Sym(k), ∥σx∥ = ∥x∥. Here, σx is defined for x = v1 ⊗ · · · ⊗ vk by
σx = vσ(1) ⊗ · · · ⊗ vσ(k) and extended by linearity to general x.

2. For all x ∈ V ⊗m and y ∈ V ⊗n,

∥x⊗ y∥ ≤ ∥x∥∥y∥. (7)

The second property is particularly useful in bounding arguments.

Definition 2.13 (Logarithm in the tensor algebra). Given x̃ ∈ T̃ ((V )), write x̃ =
1+ x, where x0 = 0. Then define the logarithm of x̃ using the usual series

log x̃ = x− x⊗2

2
+

x⊗3

3
− x⊗4

4
+ · · ·

where x⊗k = x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

.

To see that the series converges, note that (xi)j = 0 for every i > j ≥ 0, so that the
jth level of log x̃ depends only on the first j terms of the series.
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Definition 2.14 (Exponential in the tensor algebra). The exponential function is
also defined on T ((V )) using the usual series,

expx = 1+ x+
x⊗2

2!
+

x⊗3

3!
+ · · ·

where 1 = (1, 0, 0, . . .).

Convergence can be shown by considering one level of T ((V )) at a time, using the
definition of ⊗ given by (6), and the property (7) of admissible norms.

When exp is restricted to T0((V )) = {(x0, x1, x2, . . .) ∈ T ((V )) : x0 = 0} and log is
defined on T̃ ((V )), these maps are inverses. Also, the maps exp and log commute
with the projections πn, and hence are well-defined on the truncated spaces [Lyo98,
Section 2.1.1.].

2.3 Multiplicative functionals and the extension theorem

Let △T be the simplex {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T}.

Definition 2.15 (Multiplicative functional [LCL07, Definition 3.1]). A multiplica-
tive functional of degree n is a continuous function

X : △T → T̃ (n)(V )

such that, for all 0 ≤ s ≤ t ≤ u ≤ T ,

Xs,t ⊗Xt,u = Xs,u

We also call a continuous function X : △T → T̃ ((V )) satisfying this property a
multiplicative functional. Multiplicative functionals can be thought of as ordinary
paths enhanced with additional information. We now define a notion of regularity
for them.

Definition 2.16 (Control function [LCL07, Definition 1.9]). A control function is
a continuous function ω : △T → [0,∞) such that ω(t, t) = 0 for all t ∈ [0, T ], and
which is superadditive:

ω(s, t) + ω(t, u) ≤ ω(s, u)

for all 0 ≤ s < t < u ≤ T .

Definition 2.17 (Multiplicative functional of finite p-variation [LCL07, Definition
3.6]). Given p ≥ 1 (non necessarily an integer) a multiplicative functional X : △T →
T̃ (n)(V ) is said to have finite p-variation controlled by ω if

∥∥X i
s,t

∥∥ ≤ ω(s, t)
i
p

β
Ä

i
p

ä
!

(8)
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for all i = 1, . . . , n and all (s, t) ∈ △T , where β is a particular constant depending
on p, and z! = Γ(z + 1) for z ≥ 0. If such a multiplicative functional exists, we say
that X has finite p-variation.

The following is an important result in the theory of rough paths, which states
that a multiplicative functional of finite p-variation is determined by its first ⌊p⌋
levels.

Theorem 2.18 (The extension theorem [LCL07, Theorem 3.7]). Take p ≥ 1, an
integer n ≥ ⌊p⌋, and a control function ω : △T → [0,∞). Let X : △T → T̃ (n)(V )
be a multiplicative functional of finite p-variation controlled by ω.

Then for any integer m ≥ n, there exists a unique multiplicative functional of finite
p-variation which extends X, i.e. X(m) : △T → T̃ (m)(V ) satisfies πn ◦X(m) = X.

For a full proof, see [Lyo98, Theorem 2.2.1.] or [LCL07, Theorem 3.7]. For our
purposes, the most interesting part is the construction of the higher degree multi-
plicative functional, one level at a time, which we now describe (following [Lyo98]
and [LCL07]).

Suppose we have a multiplicative functional of degree m, X
(m)
s,t = (1, X1

s,t, . . . , X
m
s,t),

satisfying ∥∥X i
s,t

∥∥ ≤ ω(s, t)
i
p

β( i
p
)!

for all i ≤ m. (9)

Let X̂s,t = (1, X1
s,t, . . . , X

m
s,t, 0) be the natural embedding of Xs,t in T (m+1)(V ). Now,

given a partition D = (t0, . . . tr) of [s, t], let

X̂D
s,t = X̂s,t1 ⊗ · · · ⊗ X̂tr−1,tr .

The strategy is to take a sequence of partitions Dk with mesh |Dk| → 0, and show
that X̂Dk

s,t converges to a multiplicative limit which extends X(m) and satisfies (9)
with i = m+ 1.

Given partitions D, D̃, let D̂ be their common refinement, and for each interval
[ti, ti+1] in D let D̂i = D̃ ∩ [ti, ti+1] for 0 ≤ i ≤ r − 1. Then,

X̂D̂
s,t − X̂D

s,t = X̂D̂0
t0,t1 ⊗ · · · ⊗ X̂

D̂r−1

tr−1,tr − X̂t0,t1 ⊗ · · · ⊗ X̂tr−1,tr .

This is a pure (m + 1)-tensor, since for 0 ≤ i ≤ m, (X̂D̂
s,t)

i = (X̂D
s,t)

i = X i
s,t by

multiplicativity. Furthermore,

(X̂D̂
s,t − X̂D

s,t)
m+1 =

r−1∑
i=0

(
X̂

D̂j

ti,ti+1

)m+1
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since all the other contributions to level m+1 of X̂D̂0
t0,t1 ⊗· · ·⊗ X̂

D̂r−1

tr−1,tr are cancelled

by the corresponding contributions to level m + 1 of X̂t0,t1 ⊗ · · · ⊗ X̂tr−1,tr , due to

the fact that X̂ i
tj ,tj+1

=
(
X̂

D̂j

tj ,tj+1

)i
for all i ≤ m.

Next, we need the following lemma:

Lemma 2.19 (A maximal inequality). Let X be a multiplicative functional of degree
m ≥ ⌊p⌋ satisfying (9).

Then for any partition D of [s, t],∥∥∥(X̂D
s,t)

i
∥∥∥ ≤ ω(s, t)

i
p

β( i
p
)!

for all i ≤ m+ 1. (10)

We omit the proof of this lemma. It involves repeatedly removing a carefully cho-
sen point from the partition, and making use of the neoclassical inequality [Lyo98,
Theorem 2.2.3.], a generalisation of the binomial theorem.

Now we can bound∥∥∥X̂D̂
s,t − X̂D

s,t

∥∥∥ ≤ r−1∑
i=0

∥∥∥(X̂D̂j)m+1
∥∥∥

≤
r−1∑
i=0

ω(ti, ti+1)
m+1
p

β
Ä
m+1
p

ä
!

by Lemma 2.19

≤ ω(0, T )

β
Ä
m+1
p

ä
!

Å
sup
i

ω(ti, ti+1)

ãm+1
p

−1

using superadditivity of ω.

Since ω is a continuous on the compact set △T , it is uniformly continuous. So, as

the mesh of the partition D goes to zero, (supi ω(ti, ti+1))
m+1
p

−1 → 0. By symmetry,
the same bound holds with D replaced by D̃ and the sup taken over the partition
D̃.

Fix a sequence of partitions Dj with mesh(Dj) → 0. Taking D = Dj and D̃ = Dk,
by the triangle inequality we have∥∥∥X̂Dj

s,t − X̂Dk
s,t

∥∥∥ ≤ ∥∥∥X̂D̂
s,t − X̂D

s,t

∥∥∥+ ∥∥∥X̂D̂
s,t − X̂D̃

s,t

∥∥∥
and applying the bound above to both terms, we see that this can be made arbitrarily

small by taking j, k ≥ N for sufficiently large N . So,
Ä
X̂

Dj

s,t

ä
is a Cauchy sequence in

T (m+1)(V ). Since V is a Banach space, so is T (m+1)(V ), so the sequence converges.
The limit can easily be shown to be a multiplicative functional, and since each X̂Dj

satisfies (10), the same inequalities hold for the limit, so it is of finite p-variation.
This concludes the extension to a multiplicative functional of degree m+1 and finite
p-variation.
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2.4 Rough paths

While not crucial for what follows, we now make some brief comments on rough
paths to provide some more context for the material presented above.

Definition 2.20 (p-rough path). Given p ≥ 1, a p-rough path is a multiplicative
functional of degree ⌊p⌋,

X : △T → T (⌊p⌋)(V )

which is of finite p-variation.

Example 2.21 (Itô and Stratonovich enhanced Brownian motion). Let Bt be a
Brownian motion, and let Bs,r denote Br −Bs. Let

BItô
s,t :=

∫ t

s

Bs,r ⊗ dBr

BStrat
s,t :=

∫ t

s

Bs,r ⊗ ◦dBr

where the integral for BItô
s,t is in the Itô sense, and the integral for BStrat

s,t is in the
Stratonovich sense. It can be shown that for any p ∈ (2, 3), BItô := (1, Bs,t,BItô

s,t ) and
BStrat := (1, Bs,t,BStrat

s,t ) are both almost surely p-rough paths [FH20, Proposition
3.4, Proposition 3.5].

A geometric p-rough path [LCL07, Definition 3.13] is a p-rough path that is the
limit in a certain sense of a sequence of 1-rough paths, extended to degree ⌊p⌋ by
the extension theorem. Given a geometric p-rough path Z and a suitably regular
function α : V → L(V,W ), it is possible to define an integral∫ t

s

α(Z)dZ

which can be used to define the notion of a solution to the rough differential equation
(RDE). Lyons’ Universal Limit Theorem [Lyo98, Theorem 4.1.1] addresses the well-
posedness of such differential equations. Details can be found in [LCL07].

3 Path signatures

Continuing with background material, in this section we introduce path signatures
and their key properties. In Sections 3.1 through 3.5 we continue to draw heavily
from [LCL07].

3.1 Signatures of bounded variation paths

Definition 3.1 (Signature of a path of bounded variation). Let X ∈ V1([0, T ], V )
be a continuous path of bounded variation. The signature over a subinterval [s, t] ⊆

12



[0, T ], denoted S(X)s,t, is an element of T ((V )) defined by iterated integrals of the
path Xt. Using Sn(X)s,t to denote the pure n-tensor at level n, define S0(X)s,t = 1,
and for n ≥ 1,

Sn(X)s,t =

∫
s<t1<t2<···<tn<t

dXt1 ⊗ dXt2 ⊗ . . .⊗ dXtn . (11)

Recall that the meaning of this integral is given by Equation (4), using the Lebesgue-
Stieltjes integral. The theory of such iterated integrals was originally developed by
K. T. Chen [Che54; Che57; Che58].

Definition 3.2 (Truncated signature). The level-n truncated signature, denoted
S(n)(X)s,t only contains the first n ≥ 0 levels,

S(n)(X)s,t = πn(S(X)s,t).

We emphasise that Sn(X)s,t ∈ V ⊗n is the pure n-tensor at level n, while S(n)(X)s,t ∈
T (n)(V ) contains all tensors up to and including level n of the signature.

Proposition 3.3 (Chen’s identity [Che58]). For a path X : [0, T ] → V of bounded
variation, the signature is multiplicative, that is,

S(X)s,t ⊗ S(X)t,u = S(X)s,u

for all 0 ≤ s ≤ t ≤ u ≤ T .

Proof. For n ≥ 1,

Sn(X)s,u =

∫
D

dXr1 ⊗ . . .⊗ dXrn

where D = {s < r1 < · · · < rn < t}.

Following [LCL07, Theorem 2.9], we split up the domain of integration and apply
Fubini’s theorem. For i = 0, . . . , n let

Ai = {s < r1 < · · · < ri < t},
Bi = {t < ri+1 < · · · < rn < u}.

Then D can be written as the disjoint union

D =
n⋃

i=0

Ai ×Bi.
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Therefore,

Sn(X)s,u =
n∑

i=0

∫
Ai×Bi

dXr1 ⊗ . . .⊗ dXrn

=
n∑

i=0

Å∫
Ai

dXr1 ⊗ . . .⊗ dXri

ã
⊗
Å∫

Bi

dXri+1
⊗ . . .⊗ dXrn

ã
(Fubini)

=
n∑

i=0

Si(X)s,t ⊗ Sn−i(X)t,u

= (S(X)s,t ⊗ S(X)t,u)
n .

The shuffle product is a product on words which is reminiscent of the riffle shuffle
from playing cards:

Definition 3.4 (Shuffle product, [FH20, Exercise 2.2]). The shuffle product v� w
between two words is a formal sum of words, defined recursively as follows. If ε
is the empty word, then w � ε = ε� w = w. For words v, w and letters a, b, let
va� wb = (va� w)b+ (v� wb)a.

Recall that words can be used to index coordinates of the signature (Definition 2.11).
For a formal sum of words, e.g. v + w, Sv+w(X) denotes Sv(X) + Sw(X).

Proposition 3.5 (Shuffle product property of the signature). Given X ∈ V1([0, T ], V ),
an alphabet A corresponding to a basis of V , and words v, w ∈ A∗,

Sv(X)Sw(X) = Sv⊔⊔w(X)

Proof ([FH20, Exercise 2.2]). This can be proved by induction on |v| + |w|. The
inductive step goes through using the product rule for the Lebesgue-Stieltjes integral.

Remark 3.6. We defined the shuffle product on words, but words on dimV letters
correspond to basis elements of T (V ∗). So, extending by bilinearity, the shuffle
product defines an algebra on T (V ∗).

Proposition 3.7 (Factorial decay). Let X ∈ V1([0, T ],Rd). Then

∥Sn(X)0,T∥ ≤
∥X∥n1,[0,T ]

n!
.

Proof (based on [LCL07, Proposition 2.2]). Since X is of bounded variation, each
component X(i) is the difference of two non-decreasing functions. So, each X(i), and

14



hence X itself, is differentiable almost everywhere. Therefore,∥∥∥∥∥∥
∫

0≤u1≤···≤un≤T

dXu1 ⊗ · · · ⊗ dXun

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫

0≤u1≤···≤un≤T

Ẋu1 ⊗ · · · ⊗ Ẋundu1 · · · dun

∥∥∥∥∥∥
≤

∫
0≤u1≤···≤un≤T

∥∥∥Ẋu1

∥∥∥ · · · ∥∥∥Ẋun

∥∥∥du1 · · · dun.

(12)

The integrand in (12) is invariant under permutations of the variables u1, . . . , un.
Summing the integrals over all n! permutations gives

n!

∫
0≤u1≤···≤un≤T

∥∥∥Ẋu1

∥∥∥ · · · ∥∥∥Ẋun

∥∥∥du1 · · · dun =

∫
[0,T ]n

∥∥∥Ẋu1

∥∥∥ · · · ∥∥∥Ẋun

∥∥∥du1 · · · dun

=

Ç∫ T

0

∥∥∥Ẋu

∥∥∥duån

= ∥X∥n1,[0,T ]

and the result follows.

Next we state that the truncated signature is a continuous map, but first we must
define a norm on the vector space Vp([0, T ], V ). It is easily checked that the p-
variation ∥·∥p,[0,T ] is a seminorm. It is not a norm, because all constant paths have
zero p-variation, but this is easily rectified:

Definition 3.8. Define the p-variation norm by

∥X∥Vp = ∥X∥p,[0,T ] + sup
t∈[0,T ]

|Xt|

This is a norm on the space of continuous paths of finite p-variation.

Proposition 3.9 (Continuity of the truncated signature [LCL07, Corollary 2.11]).
With V1([0, T ], V ) equipped with the norm ∥·∥V1, for any integer n ≥ 0, the truncated
signature

πn ◦ S : V1([0, T ], V )→ T (n)(V )

is continuous.

Proof. See [Lyo98, Corollary 2.11]. Letting St = πn(S(X)), the idea is that St satis-
fies a CDE driven by Xt, to which a version of Picard’s theorem [LCL07, Theorem
1.28] can be applied to establish continuity.
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3.2 The signature determines the path

A basic property of the signature, which follows from properties of integration, is
that it is invariant under time-reparametrisation. The following definition of tree-like
equivalence of paths can be seen as a generalised notion of reparametrisation.

Definition 3.10 (Height function [HL10, Definition 1.2]). Given a pathX : [0, T ]→
V in a normed space, a height function for X is a non-negative continuous function
h : [0, T ]→ R such that h(0) = h(T ) = 0 and

∥Xt −Xs∥ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u) for all 0 ≤ s < t ≤ T.

Definition 3.11 (Tree-like path [HL10, Definition 1.2]). A bounded variation path
is called tree-like if it has a height function.

Example 3.12. A path Xt which is injective on (0, T ) cannot be tree-like. This
is because if X has a height function h, then h must attain a positive maximum
M > 0 at some t∗ ∈ (0, T ). Let a = sup{t ∈ [0, t∗) : h(t) = M

2
} and b = inf{t ∈

(t∗, T ] : h(t) = M
2
}. Then 0 < a < b < T , and h(a) = h(b) = infs∈[a,b] h(u), therefore

∥Xb −Xa∥ = 0, a contradiction.

Definition 3.13 (Tree-like equivalence [HL10, Definition 1.3]). Two bounded vari-
ation paths X and Y are said to be tree-like equivalent if the concatenation of X

with the reversed path of Y , X ∗
←−
Y is a tree-like path.

∼

Figure 1: Tree-like equivalent paths

A result of Hambly and Lyons is that the signature determines the path, up to
tree-like equivalence.

Theorem 3.14 (Uniqueness of the signature). Let X and Y be two continuous
bounded variation paths. Then X is tree-like equivalent to Y if and only if S(X) =
S(Y ).

Proof. Consequence of [HL10, Theorem 4].

3.3 The signature is a universal nonlinearity

Recall the classical Stone-Weierstrass theorem:
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Theorem 3.15 (Stone-Weierstrass [Sto48]). Let K be a compact Hausdorff space.
Let C(K) be the Banach space of continuous real-valued functions on K. Suppose
A ⊆ C(K) be a subalgebra which separates points. Then A is dense in C(K).

This can be used to prove that any continuous real-valued function on paths can
be approximated arbitrarily well by a linear function composed with the signature,
which motivates the method of performing linear regression on signature features
[LLN13].

Theorem 3.16 (The signature is a universal nonlinearity [LLN13, Theorem 3.1]).
Let K be a compact subset of the space V1([0, T ],Rd) of paths of finite 1-variation,
equipped with the norm ∥·∥V1 given by Definition 3.8. Assume that no two paths in
K are tree-like equivalent. Let A denote the set of functions K → R of the form
X 7→ ⟨ℓ, S(X)⟩, for ℓ ∈ T ((Rd)∗). Then A is dense in C(K).

Proof. By assumptionK is compact, and as a subset of a metric space it is Hausdorff.

Proposition 3.9 shows that the truncated signature is continuous, and linear func-
tions on T (n)(Rd) are certainly continuous. Any function in A can be expressed as
a linear function of the truncated signature, ⟨ℓ, Sn(X)⟩ for some n, and hence is
continuous.

For c ∈ R, we can set ℓ = (c∗, 0, . . .) where c∗ is the constant function which maps
every x ∈ R to c. So, A contains all constant functions f(X) ≡ c. Given two func-
tions f, g ∈ A, we can write f(X) =

∑m
i=1 αviS

vi(X) and g(X) =
∑n

j=1 βwj
Swj(X),

where αvi , βwj
∈ R and the words vi, wj index signature coefficients (Definition 2.11).

By Proposition 3.5,

f(X)g(X) =
m∑
i=1

n∑
j=1

αviβwj
Svi(X)Swj(X)

=
m∑
i=1

n∑
j=1

αviβwj
Svi⊔⊔wj(X).

Therefore fg ∈ A, so A is a subalgebra of C(K).

By Theorem 3.14 and the assumption that no two paths inK are tree-like equivalent,
A separates points. By the Stone-Weierstrass theorem, the result follows.

Remark 3.17. The compactness assumption in Theorem 3.16 may seem like a
minor technical point, but it is quite restrictive [BPS23, Section 2.2]. It is not clear
how we would ensure in practice that this condition is satisfied. Closed balls in
the p-variation norm, for example, are not compact. It is possible to remove the
compactness assumption and obtain a universal approximation result which applies
globally [CST23].
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On the other hand, the assumption that no two paths in K are tree-like equivalent is
not so restrictive in practice, as data observed in the real world is unlikely to contain
tree-like equivalent paths. It is also easy to prevent distinct paths from being tree-like
equivalent by adding time as an additional component.

3.4 Log signatures

The shuffle product property implies that signatures of bounded variation paths con-
tain some algebraic redundancies. For example, Si(X)Sj(X) = Sij(X) + Sji(X).
In particular, the range of the (truncated) signature is a proper subset of the (trun-
cated) tensor algebra. It is common to take the logarithm of the signature, which
removes these redundancies:

Definition 3.18 (Log signature). Given a path X of finite 1-variation, the log
signature is given by

log(S(X)s,t)

Definition 3.19 (Truncated log signature). The truncated log signature is simply

log(n) S(X)s,t = πn(logS(X)s,t).

In the next section we shall see that the truncated log signature takes values in a
proper linear subspace of the truncated tensor algebra, and in section 3.6 we give
the formula for its dimension.

3.5 Free nilpotent Lie groups and Lie algebras

We now seek to understand the range of the truncated signature and log signature
maps.

Definition 3.20 (Group-like elements [LCL07, Definition 2.18]). Recall from Re-
mark 3.6 that the space T (V ∗) can be equipped with the shuffle product to form an
algebra.

Define the set G(∗)(V ) of group-like elements by

G(∗)(V ) = {x ∈ T̃ ((V )) : e∗(x)f∗(x) = (e∗
� f∗)(x) for all e∗,f∗ ∈ T (V ∗)}.

For n ≥ 0, define
G(n)(V ) = πn(G

(∗)(V )).

Definition 3.21. Let g be a Lie algebra, and let U, V be two linear subspaces of g.
Define [U, V ] by

[U, V ] = span{[u, v] : u ∈ U, v ∈ V }

Definition 3.22 (Lie bracket on T ((V ))). For x, y ∈ T ((V )), define

[x, y] = x⊗ y − y ⊗ x.
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The vector space T ((V )) equipped with [·, ·] is a Lie algebra.

Definition 3.23 (Lie polynomials). Define the spaces of homogeneous Lie polyno-
mials of degree n, Ln, by L0 = 0 ⊆ R, L1 = V , and for n ≥ 2, Ln = [V, Ln−1].
Define the space of Lie polynomials of degree n as L(n)(V ) = L0 ⊕ · · · ⊕ Ln.

Note that L(n)(V ) is a linear subspace of T (n)(V ). This is in contrast to G(n)(V ),
which is a proper subset of T (n)(V ) (not all elements of T (n)(V ) satisfy the shuffle
product property) but not a linear subspace. Instead, G(n)(V ) can be thought of as
occupying a curved submanifold of T (n)(V ), with the exponential map from L(n)(V )
providing a global coordinate chart.

Proposition 3.24. For n ≥ 0 and x ∈ T̃ (n)(V ). Then

x ∈ G(n)(V ) ⇐⇒ log(x) ∈ L(n)(V ).

Proof. [LCL07, Lemma 2.24].

Theorem 3.25 (Range of the truncated signature). Writing V1 = V1([0, T ], V ), the
space of continuous bounded variation paths [0, T ]→ V ,

S(n)(V1) = G(n)(V ).

Proof. That S(n)(V1) ⊆ G(n)(V ) follows from the shuffle product property of the
signature (Proposition 3.5).

That the truncated signature is surjective onto G(n)(V ) follows from Chow’s theorem
[FV10, Theorem 7.28], which states that for any x ∈ G(n)(V ) there is a path X such
that S(n)(X) = x.

Corollary 3.26 (Range of the truncated log signature).

logS(n)(V1) = L(n)(V ).

Proof. This follows from Theorem 3.25 and Proposition 3.24.

3.6 Dimension of the free nilpotent Lie algebra

Let d = dim(V ) be the dimension of the underlying vector space, and let

N d
n := dim

Ä
L(n)(V )

ä
.

By Corollary 3.26, this is the dimensionality of a truncated log signature, when it is
expressed using a basis of L(n)(V ). Since we will be using log signatures to construct
features, and we are interested in the dimensionality of our feature sets, we need to
know N d

n .
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Figure 2: Growth of N d
n for d = 3.

A common choice of basis for L(n)(V ) is the Lyndon basis, which in fact provides
a basis for each Lk that corresponds to the set of Lyndon words on d letters of
length k. A Lyndon word is a non-empty word which is strictly lexicographically
smaller than any of its proper suffixes, and the mapping from Lyndon words to basis
elements is described in [Reu93, Section 4.2] and [Rei17].

Taking for granted that this basis exists, computing dim(Lk) amounts to counting
the number of Lyndon words of length k on d letters. There are dk words of length
kon d letters. To count these in a second way, a word of length k can be factorised
as k/r repeated copies of a primitive (i.e. not periodic) word of length r. Such
a primitive word is associated to a unique Lyndon word of length r by a cyclic
rotation. Letting ℓ(r) being the number of Lyndon words of length r, such an
argument yields

dk =
∑
r|k

rℓ(r).

Applying the Möbius inversion formula from classical number theory gives:

Proposition 3.27 (Witt’s formula [Wit37]). For k ≥ 1, the dimension of Lk is

ℓ(k) =
1

k

∑
r|k

µ

Å
k

r

ã
dr

where µ is the Möbius function.

Theorem 3.28 (Dimension of the free nilpotent Lie algebra).

N d
n =

n∑
k=1

1

k

∑
r|k

µ

Å
k

r

ã
dr

Proof. This follows from Proposition 3.27, since L(n)(V ) = L0 ⊕ · · · ⊕ Ln.

Now, for n > 1, N d
n < dim

(
T (n)(V )

)
, since the Lyndon words of length at most

n are a proper subset of all words of length at most n. However, N d
n still grows
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rapidly as n → ∞. We prove this in the following proposition, building upon the
proof [Did] of the asymptotic behaviour of

∑n
k=1

2k

k
.

Proposition 3.29. When d is fixed, N d
n ∼ dn+1

(d−1)n
as n→∞.

Proof. Let Sn =
∑n

k=1
1
k
dk. Recalling that µ takes values in {−1, 0, 1}, and the

second highest divisor of an integer k is at most k/2, we have

N d
n = Sn +

n∑
k=1

∑
r|k,
r<k

µ

Å
k

r

ã
1

k
dr

= Sn +
n∑

k=1

∑
r|k,
r<k

O
Ä
d

k
2

ä
= Sn +O

(
n2d

n
2

)
where we have used a crude upper bound of n2 for the number of terms in the double
sum.

Now,
(d− 1)n

dn+1
O
(
n2d

n
2

)
→ 0 as n→∞.

To deal with the Sn term, we reproduce the argument of [Did], slightly generalised.
First,

Sn ≥
n∑

k=1

1

n
dk

=
1

n

Å
dn+1 − d

d− 1

ã
.

And for any u ∈ (0, 1),

Sn =
∑
k<un

1

k
dk +

∑
un≤k<n

1

k
dk

≤
∑
k<un

dk +
∑

un≤k<n

1

un
dk

≤ dun − d

d− 1
+

1

un

dn+1 − d

d− 1
.

So,

1− d−n ≤ (d− 1)n

dn+1
Sn ≤ n

Ä
dun−(n+1) − d−n

ä
+

1

u

(
1− d−n

)
.
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Taking n→∞, we obtain

1 ≤ lim inf
n→∞

(d− 1)n

dn+1
Sn ≤ lim sup

n→∞

(d− 1)n

dn+1
Sn ≤

1

u
.

Taking u ↑ 1, we obtain limn→∞
(d−1)n
dn+1 Sn = 1, and the result follows.

Figure 2 shows that N d
n is well approximated by dn+1

(d−1)n
even for small n.

4 Path signatures in machine learning

The use of truncated signatures as a feature set for regression analysis with path
data was proposed in [LLN13]. Applications for financial data were studied in
[Gyu+13; LNO14]. As already noted, this methodology is justified by Theorem
3.16. Signatures have also been used in combination with modern machine learning
techniques such as deep learning and gradient boosting, in a range of applications:
see, for example, [YJL15; Yan+16; Lia+19; Mor+19; Lia+21; Yan+22]. There are
also kernel tricks which allow one to avoid explicitly computing truncated signatures
[KO19], and even to implicitly use the untruncated signature [Sal+21].

We consider a framework where truncated signatures, or log signatures, are used to
construct a feature set, which can subsequently be used as the inputs for standard
machine learning algorithms.

4.1 The trade-off between truncation level and path seg-
mentation

A common technique when creating path signature features is to extract multiple
subpaths, compute truncated (log) signatures over each of them, and stack the re-
sults to form a feature vector. This is done, for example, in [Yan+16; Mor+19;
Yan+22], and [Mor+20] compares a few ways of extracting the subpaths via “win-
dowing” operations. Several works which combine signatures with more sophisti-
cated deep learning architectures also make use of truncated log signatures over
subintervals, e.g. [Lia+21; Mor+21; Wal+24].

Taking signatures over m subpaths allows more information to be captured, while
only increasing the feature size by a factor of m. In contrast, the feature size grows
rapidly as the truncation level is increased (Proposition 2.10; Proposition 3.29).
Depending on the dataset, there may be additional reasons to favour features that
are localised in time in this way.

The trade-off between truncation level and path segmentation arises when one aims
to find a feature set that has minimal dimension while also being sufficiently de-
scriptive. Having low-dimensional features is particularly important in “small data”
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Figure 3: Signature features with ordinary vs. hierarchical partition.

problems, to avoid overfitting. In the following, we consider two ways of measur-
ing how descriptive the features are: the first via error bounds for approximating
a certain class of functions, and the second by training models and measuring the
generalisation error.

The simplest approach to constructing subpaths is to pick a partitionD = (t0, . . . , tm)
of the time domain, and take the collection of level N -truncated signatures over each
of the m subintervals [ti, ti+1]. Another approach, illustrated in Figure 3, is to split
the time domain in a hierarchical dyadic manner, and compute truncated signatures
over every interval (not just those on the lowest level), as in [Yan+16].

Although level-N signatures and log signatures express the same information, given
Theorem 3.16 we might expect signatures to express it in a simpler form, in the
sense that simpler functions can be used to make predictions with high accuracy.
Similarly, by Chen’s identity (Proposition 3.3), signatures over the lowest level of
the dyadic hierarchy completely determine the signatures over the rest of intervals
in the hierarchy, but using the full dyadic hierarchical features can still be beneficial
in practice [Mor+20].

Previous works typically split the time domain into equal chunks, but we do not make
this restriction. We shall see that the theory suggests splitting by equal length, or
equal p-variation instead, and that this can be beneficial on real data.

4.2 Practicalities

We now mention some additional practical considerations that arise when using path
signatures to construct features.

• Data is typically given as a series of points, so one must choose how to inter-
polate to form a path [CK16, Section 2.1].
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• There are a number of augmentations that can be applied to paths as pre-
processing steps before computing signatures (see [CK16, Section 2.1] and
[LM22, Section 2.5]). Augmentations can also be learned [Bon+19]. Several
approaches are compared in [Mor+20].

• It is standard practice to normalise features, so that every input variable is on
the same scale. In [Mor+20], two dataset-independent approaches to rescaling
signature terms are compared. Another option (which we use) is to standardise
the features in the typical way, using the dataset statistics.

5 Approximation of solutions to CDEs

In this section, the original contributions of this dissertation begin. We analyse path
signature feature sets through error bounds for approximation schemes which use
the features to approximate time T solutions to CDEs.

5.1 Linear CDEs

In this subsection, we assume that Rd is equipped with the ℓ1 norm and that the
tensor product spaces (Rd)⊗n are equipped with the projective tensor norm. This
can be expressed as

∥x∥ =
∑

i1,...,in
∈{1,...d}

∣∣⟨e∗i1 ⊗ · · · ⊗ e∗in , x⟩
∣∣ = ∑

i1,...,in
∈{1,...d}

∣∣xi1,...,in
∣∣. (13)

where e1, . . . , ed is the standard basis of Rd, and this family of norms is admissi-
ble.

Given a continuous bounded variation path, X ∈ V1([0, T ],Rd), consider the linear
CDE

dYt = AYtdXt, Y0 = y0 (14)

where Yt is a path taking values in Re, and A ∈ L(Rd, L(Re,Re)).

Consider the family of functions which map bounded variation paths to the solution
of a linear CDE at time T > 0:

F =
{
X 7→ YT : A ∈ L(Rd, L(Re,Re)), y0 ∈ Re, Yt satisfies (14)

}
.

If the dimension e is allowed to grow arbitrarily large, then functions in F composed
with linear projections form a dense subset of C(V1([0, 1],Rd),R). This follows from
Theorem 3.16 and the fact that the truncated signature S(n) itself satisfies a linear
CDE [LCL07, Lemma 2.10].

We measure the expressivity of a feature map Feat : V1([0, T ],Rd) → Rk by asking
how well functions f ∈ F can be approximated by (gf ◦ Feat) for some function
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gf which is allowed to depend on f . In other words, we ask how well the time
T solutions of a class of linear CDEs can be approximated using the feature set.
Fix constants L > 0, r > 0, C > 0. Considering f fixed, we shall assume that the
associated A and y0 are known and can be used to construct gf . The closeness of
(gf ◦ Feat) to f can be measured by

sup
X∈V1([0,T ],Rd),
∥X∥1,[0,T ]≤L

∥f(X)− gf (Feat(X))∥

and if the feature map is highly expressive, then for all functions f ∈ F up to a
given regularity, it should be possible to find a gf such that (gf ◦Feat) is close to f .
So, the expressivity of Feat can be measured by

sup
f∈F ,
∥A∥≤r,
∥y0∥≤C

inf
gf

sup
X∈V1([0,T ],Rd),
∥X∥1,[0,T ]≤L

∥f(X)− gf (Feat(X))∥ (15)

where ∥A∥ is the operator norm of A as a linear map Rd → L(Re,Re).

We now fix Feat to be the map from a path to the collection of level N log signatures
over a partition D of [0, T ] containing m intervals. We choose log signatures in order
to minimise the feature size, which is mN d

N . The function gf is capable of recovering
the truncated signatures if required. We shall consider how to choose D optimally,
and find an upper bound on (15) in terms of m and N .

Lemma 5.1. For y ∈ Re, x ∈ (Rd)⊗n,∥∥A⊗n(y)(x)
∥∥ ≤ ∥A∥n∥y∥∥x∥

where A⊗n is defined as in equation (3).

Proof.

∥∥A⊗n(y)(x)
∥∥ =

∥∥∥∥∥∥∥∥
∑

i1,...,in
∈{1,...d}

xi1,...,inA⊗n(y)(ei1 ⊗ · · · ⊗ eid)

∥∥∥∥∥∥∥∥
≤

∑
i1,...,in
∈{1,...d}

∣∣xi1,...,in
∣∣∥∥A⊗n(y)(ei1 ⊗ · · · ⊗ eid)

∥∥
=

∑
i1,...,in
∈{1,...d}

∣∣xi1,...,in
∣∣∥A(eid) ◦ · · · ◦ A(ei1)y∥

≤
∑

i1,...,in
∈{1,...d}

∣∣xi1,...,in
∣∣∥A∥n∥y∥

= ∥A∥n∥y∥∥x∥. (by (13))
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Proposition 5.2. The time T solution of the linear CDE (14) is given by

YT =
∞∑
n=0

A⊗n(y0) (S
n(X)0,T ) . (16)

Proof ([LCL07, Section 2.1]). This follows from the classical Picard iteration, the
second iteration of which is given by equation (5). Convergence of the series (16)
follows from Lemma 5.1 and Proposition 3.7 (factorial decay).

The formula (16) for the time T solution of a linear CDE depends on the full
signature. We have seen that the proof of the extension theorem (Theorem 2.18)
involves using level-N truncated signatures over a partition to construct the level-
(N +1) term of the signature. Motivated by this, we consider approximating higher
order terms of the signature from lower order signatures taken over a partition.

Take a partition 0 = t0 ≤ · · · ≤ tm = T of [0, T ], and integers N, k ≥ 0. By repeated
applications of Chen’s identity (Proposition 3.3),

SN+k(X)0,T =
∑

n1,...,nm≥0,
n1+···+nm=N+k

Sn1(X)t0,t1 ⊗ · · · ⊗ Snm(X)tm−1,tm . (17)

If k is not too large, then some terms in the sum (17) have ni ≤ N for all i. Given
FeatX, these terms are known.

Definition 5.3. Given a partition D = (0 = t0, t1, . . . , tm = T ), define

S̃N,k
D (X) =

∑
0≤n1,...,nm≤N,
n1+···+nm=N+k

Sn1(X)t0,t1 ⊗ · · · ⊗ Snm(X)tm−1,tm

S̃N,k
D (X) is the part of the sum (17) which can be computed from the data Feat(X)

of truncated signatures over intervals [tj−1, tj]. We consider it as an approximation
to SN+k(X)0,T .

Observe that

S̃N,k
D (X) =

®
SN(X)0,T if k = 0,

0 if N + k > mN.
(18)

Proposition 5.4. Given X ∈ V1([0, T ],Rd) and a partition D as above,∥∥∥SN+k(X)0,T − S̃N,k
D (X)

∥∥∥ ≤ ∑
n1+···+nm=N+k,
nj>N for some j

∥X∥n1

1,[t0,t1]
. . . ∥X∥nm

1,[tm−1,tm]

n1! . . . nm!
(19)
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Proof.

∥∥∥SN+k(X)0,T − S̃N,k
D

∥∥∥ =

∥∥∥∥∥∥∥∥
∑

n1+···+nm=N+k,
nj>N for some j

Sn1(X)t0,t1 ⊗ · · · ⊗ Snm(X)tm−1,tm

∥∥∥∥∥∥∥∥
≤

∑
n1+···+nm=N+k,
nj>N for some j

∥∥S(n1)(X)t0,t1
∥∥ · · · ∥∥S(n1)(X)tm−1,tm

∥∥
≤

∑
n1+···+nm=N+k,
nj>N for some j

∥X∥n1

1,[t0,t1]
. . . ∥X∥nm

1,[tm−1,tm]

n1! . . . nm!

using the factorial decay bound (Proposition 3.7).

Since X is continuous,

∥X∥1,[0,T ] =
m−1∑
i=0

∥X∥1,[ti,ti+1]

so we can minimise the bound (19) by solving the optimisation problem

min
∑

n1+···+nm=N+k,
nj>N for some j

xn1
1 . . . xnm

m

n1! . . . nm!

s.t. xi > 0, i = 1, . . . ,m

x1 + · · ·+ xm = L

(20)

where L = ∥X∥1,[0,T ], and the inequalities xi > 0 are taken to be strict to ensure
that the partition genuinely has m nonempty subintervals.

Remark 5.5. When N+k > mN , the constraint in the sum that nj > N for some j
is redundant, and ∑

n1+···+nm=N+k,
nj>N for some j

xn1
1 . . . xnm

m

n1! . . . nm!
= (x1 + · · ·+ xm)

N+k = LN+k

which is independent of the choice of the xi. Next, we prove that when N+k ≤ mN ,
the optimisation problem (20) is solved by taking x1 = · · · = xm = L

m
. It is tempting

to simply appeal to the symmetry of the problem, but since this objective function is
in general non-convex, this does not immediately give the conclusion.

Proposition 5.6. Suppose L > 0 and N ≥ 1, m ≥ 1, k ≥ 1 are given such that
N + k ≤ mN . Then the solution to the minimisation problem (20) is given by
x1 = · · · = xm = L

m
.
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Proof. If x1, . . . , xm > 0 satisfy x1+ · · ·+xm = L and are not all equal, then without
loss of generality we may assume that 0 < x1 < x2. Consider setting x̂1 = x + s,
x̂2 = x − s, and x̂j = xj for all j ≥ 3, where s ∈ [0, x̂2 − x̂1]. These x̂i still satisfy
the constraints of (20). Let F (s) be the value of the objective function evaluated at
x̂1, . . . , x̂m:

F (s) =
∑

n1+···+nm=N+k,
nj>N for some j

(x1 + s)n1(x2 − s)n2xn3
3 . . . xnm

m

n1! . . . nm!
.

Then

F ′(s) =
∑

n1+···+nm=N+k,
nj>N for some j

n1(x1 + s)n1−1(x2 − s)n2xn3
3 . . . xnm

m

n1! . . . nm!

−
∑

n1+···+nm=N+k,
nj>N for some j

n2(x1 + s)n1(x2 − s)n2−1xn3
3 . . . xnm

m

n1! . . . nm!
.

Evaluating at zero:

F ′(0) =
∑

n1+···+nm=N+k,
nj>N for some j,

n1≥1

n1x1
n1−1x2

n2xn3
3 . . . xnm

m

n1! . . . nm!

−
∑

n1+···+nm=N+k,
nj>N for some j,

n2≥1

n2x1
n1x2

n2−1xn3
3 . . . xnm

m

n1! . . . nm!

=
∑

n1+···+nm=N+k,
nj>N for some j,

ñ1:=n1−1≥0

x1
ñ1x2

n2xn3
3 . . . xnm

m

ñ1!n2! . . . nm!

−
∑

n1+···+nm=N+k,
nj>N for some j,

ñ2:=n2−1≥0

x1
n1x2

ñ2xn3
3 . . . xnm

m

n1!ñ2!n3! . . . nm!

=
∑
A1

xn1
1 . . . xnm

m

n1! . . . nm!
−
∑
A2

xn1
1 . . . xnm

m

n1! . . . nm!
, (21)

where in the final inequality (21) we have reset the indices n1 := ñ1 and n2 := ñ2

respectively, with

Ai := {n1, . . . , nm ≥ 0 :
∑
i

ni = N+k−1 and (nj > N for some j ̸= i, or ni > N−1)}.

Now, we can decompose Ai as a disjoint union of sets, Ai = Bi ∪ Ci where

Ci = {n1 + . . .+ nm = N + k − 1, nj > N for some j},
Di = {n1 + . . .+ nm = N + k − 1, ni = N and nj ≤ N for all j ̸= i}.
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Since Ci does not actually depend on i, the contributions from C1 and C2 in (21)
cancel, and we are left with

F ′(0) =
∑
D1

xn1
1 . . . xnm

m

n1! . . . nm!
−
∑
D2

xn1
1 . . . xnm

m

n1! . . . nm!
.

We claim that F ′(0) < 0. We have

F ′(0) =
x1

N

N !

∑
n2+···+nm=k−1,
nj≤N for all j

x2
n2 . . . xm

nm

n2! . . . nm!
− x2

N

N !

∑
n1+n3+···+nm=k−1,

nj≤N for all j

x1
n1x3

n3 . . . xm
nm

n1!n3! . . . nm!

=
N∑

n=0

x1
Nx2

n

N !n!

∑
Tn

x3
n3 . . . xm

nm

n3! . . . nm!
−

N∑
n=0

x2
Nx1

n

N !n!

∑
Tn

x3
n3 . . . xm

nm

n3! . . . nm!
, (22)

where

Tn = {(n3, . . . , nm) : n3 + · · ·+ nm = k − 1− n, 0 ≤ nj ≤ N for all j ≥ 3}

and we note that Tn may be empty for some choices of n. Since x1 < x2, for each
0 ≤ n ≤ N we have x1

Nx2
n ≤ x2

Nx1
n. The inequality is strict when n < N , and

in particular when n = 0. The inner sums of (22) are the same for each n, and are
strictly positive unless Tn is empty, in which case they are zero. Now, N + k ≤ mN
implies that (m− 1)N ≥ k, which implies that T0 is nonempty. Overall this shows
that for each n = 0, . . . , N ,

x1
Nx2

n

N !n!

∑
Tn

x3
n3 . . . xm

nm

n3! . . . nm!
≤ x2

Nx1
n

N !n!

∑
Tn

x3
n3 . . . xm

nm

n3! . . . nm!
,

with strict inequality when n = 0. Therefore, F ′(0) < 0, so unless x1 = . . . = xm =
L
m

in (20), a small perturbation can decrease the objective while still satisfying the
constraints. The claim is proved.

Proposition 5.6 shows that when N + k ≤ mN , to minimise (19) it is optimal to
choose the partition D such that each part has equal 1-variation. Proposition 5.4
then gives: ∥∥∥SN+k(X)0,T − S̃N,k

D (X)
∥∥∥ ≤ ∑

n1+···+nm=N+k,
nj>N for some j

(
L
m

)n1 . . .
(
L
m

)nm

n1! . . . nm!

=

Å
L

m

ãN+k C(N, k,m)

(N + k)!
(23)
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where

C(N, k,m) :=
∑

n1+···+nm=N+k,
nj>N for some j

Ç
N + k

n1, . . . , nm

å
.

When N + k > mN , S̃N,k
D (X) = 0 and C(N, k,m) = mN+k, so we recover the a

priori bound of Proposition 3.7.

Definition 5.7. By plugging the approximation S̃N,k
D (X) into (16), and using (18),

we obtain an approximation to the time T solution:

ỸT :=
N∑

n=0

A⊗n(y0) (S
n(X)0,1) +

mN∑
n=N+1

A⊗n(y0)
Ä
S̃N,n−N
D (X)

ä
.

Note that this is a function of Feat(X), the level N signatures over subintervals of
D.

Proposition 5.8. Let r > 0 and L > 0 be constants. For any linear vector field
A with ∥A∥ ≤ r, let ỸT be defined as above, with the partition splitting the path
into parts of equal 1-variation. Then for any driving path X : [0, T ] → Rd with
∥X∥1,[0,T ] ≤ L,

∥∥∥YT − ỸT

∥∥∥ ≤ mN∑
n=N+1

Å
rL

m

ãn C(N, n−N,m)

n!
∥y0∥+

∞∑
n=mN+1

(rL)n
1

n!
∥y0∥ (24)

Proof.

YT − ỸT =
mN∑

n=N+1

A⊗ny0
Ä
Sn(X)0,T − S̃N,n−N

D (X)
ä
+

∞∑
n=mN+1

A⊗ny0S
n(X)0,T

Then take norms and apply Lemma 5.1, the bound (23), and the a priori factorial
decay bound of Proposition 3.7.

Taking gf to be the function which maps Feat(X) to the approximation ỸT , (24)
amounts to an upper bound on (15), as desired. If N , m, and rL are known, then
the value of (24) can be calculated exactly. The infinite series term is the tail of
an exponential series, and the combinatorial quantity C(N, k,m) can be efficiently
calculated using recursion in m (see the Appendix for code). These error bounds
are plotted in Figure 4. One can read off from these plots the truncation level of
the most efficient feature set that achieves a given value for the error bound. When
d = 2, higher values of N tend to be optimal. When d is increased to 3 or 4, higher
truncation levels are more costly in terms of feature size (recall Proposition 3.29)
and we see that lower values of N , e.g. 2, 3, 4, are optimal. Increasing rL also
favours features sets with lower N and higher m, due to the appearance of

(
rL
m

)n
in

(24).
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Figure 4: Plots of the upper bound (24) from Proposition 5.8 against the size mN d
N

of the log signature feature set, where dimension d ∈ {2, 3, 4} and rL ∈ {1, 5}. For
each truncation level N , the number of subintervals m increases in steps of 1 up to
a maximum determined by computational constraints. We assume ∥y0∥ = 1.
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Remark 5.9. There are specific functions in F for which a given error tolerance
is achieved most efficiently using higher order signature terms. For example, the
truncated signature itself is a solution to a linear CDE. Crucially, the error bounds
plotted in Figure 4 apply for all linear vector fields A with ∥A∥ ≤ r.

5.2 Nonlinear CDEs

The approximation given in Definition 5.7 can also be derived using truncations of
the series (16) in a “multi-step” approximation method with respect to the partition
D = (t0, . . . , tm). Let Ỹ

multi
t0

= y0 and for i = 0, . . . ,m− 1 let

Ỹ multi
ti+1

=
N∑

n=0

A⊗n(Ỹ multi
ti

)(Sn(X)ti,ti+1
).

Then
Ỹ multi
tm = Ỹtm .

Furthermore, this is a special case of the “step-N Euler scheme” defined in [FV10,
Definition 10.29], which is also defined when the vector field is nonlinear, and con-
verges as long as the vector field is sufficiently regular.

As in the previous subsection, the scheme only uses data about the driving path
in the form of level-N signatures over subintervals of a partition, and produces an
estimate of the time T solution. We mention this because the form of the error
bound for the Euler scheme again suggests choosing the partition using an “equal
p-variation” split. So far we have only considered signatures of bounded variation
paths, but signatures can also be defined for paths of finite p-variation for p ∈ [1, 2)
(e.g. using the extension theorem). We state the following proposition for p ∈ [1, 2),
although it is a special case of a result which holds for all p ≥ 1.

Proposition 5.10. Suppose X is a path of finite p-variation, where p ∈ [1, 2), and
N ≥ 1. For a sufficiently regular vector field (the required level of regularity depends
on N), the step-N Euler scheme over the partition D = (t0, . . . , tm) has the error
bound ∥∥∥YT − Y Euler;D

T

∥∥∥ ≤ C
m∑
i=1

∥X∥N+1
p,[ti−1,ti]

(25)

where C is a constant depending on N , p, the vector field, and ∥X∥p,[0,T ].

Proof. This follows from [FV10, Theorem 10.30]. The statement there involves a
notion of p-variation for paths taking values in G(⌊p⌋)(Rd) based on the Carnot-
Carathéodory norm, but when p ∈ [1, 2), the Carnot-Carathéodory norm of Xti,ti+1

is simply
∥∥Xti,ti+1

∥∥
Rd , so that the notion of p-variation agrees with Definition 2.1.
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If p = 1, then since
∑m

i=1 ∥X∥1,[ti−1,ti]
= ∥X∥1,[0,T ] is fixed and N +1 > 1, the bound

(25) is minimised by choosing the partition such that the ∥X∥1,[ti,ti+1]
are all equal.

In contrast to (20) this is immediate by convexity.

Remark 5.11. The log-ODE method is another scheme which uses the same data
and has an error bound similar to (25) [Mor+21, Theorem B.7].

6 Empirical tests of generalisation performance

6.1 Methodology

We now train simple machine learning models using path signature features, taken
over subpaths. Our goal is to compare choices of N , the truncation level, and m,
the number of subintervals1 to see what is the most efficient way to achieve a given
test accuracy. We consider ordinary partitions and (in Section 6.2 only) hierarchical
partitions (recall Figure 3). We consider splitting into equal time segments, or, mo-
tivated by the previous section, into equal 1-variation segments, or equal p-variation
for some p > 1. This approach to splitting maintains the invariance of the features
under time-reparametrisation. It is not computationally expensive, since it only
requires computing the running p-variation (linear time in the length of the path)
and finding the points at which to split using m− 1 binary searches.

Given level-N log signatures expressed, for example, in the Lyndon basis, the co-
efficients of the level N signature can be recovered using polynomial functions of
the log signature coefficients. If these are given over subintervals in a partition,
tensoring the truncated signatures together is also a polynomial function. So, by
Theorem 3.16, this gives a universal approximation result for polynomial functions
of truncated log signature features over subintervals (when the truncation level is
allowed to grow arbitrarily large).

Motivated by this, for regression we use kernel ridge regression with a polynomial
kernel, and for classification we use support vector machines with a polynomial
kernel. The advantage of using kernel methods is that they do not require explicitly
computing the polynomial features.

We perform experiments on two synthetic datasets and one real dataset. In each
case, 25% of the data is withheld to create a test set. The feature sets are constructed
using RoughPy2 [ML24] to compute (log) signatures. For normalisation, we apply
min-max scaling to the paths before taking signatures, and standardise again after
taking signatures, such that every feature has zero mean and unit variance. We use
the scikit-learn [Ped+11] implementations of kernel ridge regression and support
vector machines, and run a 5-fold cross-validation procedure over the training set to
optimise the degree of the polynomial kernel and the regularisation parameter. The

1[Lia+19, Figure 8] does this for the logsig-RNN architecture.
2We thank Sam Morley for a helpful conversation in which he explained the interface.
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γ parameter is set using the scikit-learn default. Using the optimal hyperparameters,
we retrain the model on the full training set and evaluate it on the test set.

6.2 Synthetic data: linear CDE solution

In this experiment, we generate a synthetic dataset by sampling 2000 paths of a
simple symmetric random walk in R2, with 128 time steps. The sizes of the jumps
are scaled such that the total length of each path is 5. Note that such paths are
already parameterised by (a constant multiple of) their 1-variation.

The target associated with each path is the solution Y1 ∈ R2 of the linear CDE

dYt = A(Yt)dXt, Y0 = (0.5, 0.5)

where the vector field A is chosen by taking a 2×2×2 array with Gaussian random
entries and rescaling such that the ∥A∥ = 1 (in the same sense as in Section 5.1,
recalling that the spaces R2 are equipped with the ∥·∥1 norm). The solution is
computed numerically using Diffrax [Kid21] with the Tsit5 solver. We observe that
if the values of ∥A∥ or the path length are set too small, then Y1 can be very well
approximated simply by the total increment of the driving path X. We choose
values such that this is not the case. With this setup, we can compute the error
bound (24), given N and m.
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Figure 5: Comparison of the average ℓ1 distance from predicted to actual solution
(lower is better) on train and test sets for various feature set constructions.

We train kernel ridge regression models using the methodology described above,
for feature sets using either signature or log signatures, and either an ordinary or
hierarchical partition. In each case, we split the time domain into equal subintervals.
When the ordinary partition is used, the test error increases with the number of
subintervals, despite the feature set containing more information. Figure 5 shows
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this for N = 2. This is not purely due to overfitting, since the train error also
increases. A possible explanation for this effect is that using more subintervals
requires a more complicated function of the features to be learned – observe that
truncating (16) gives an approximation for Y1 as a linear function of the signature
over the entire path, while the same approximation expressed in terms of signatures
over subpaths requires tensoring them together, resulting in a more complicated
(polynomial) function.

Given this, in Figure 6 we use hierarchical signature features to compare different
values N and m. The best test error is achieved using level 2 signatures. However,
for all truncation levels, we observe overfitting for larger values of m. The models
outperform the error bound for lower feature sizes, but the error bound decreases
very rapidly to zero for larger feature sizes.
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Figure 6: Train and test error, measured using ℓ1 distance between predicted and
actual solution, using hierarchical signature features. For each truncation level N ,
the number of levels in the hierarchical partition is increased incrementally. The
error bound trace is the running minimum of the value of (24) for each point, using
the number of intervals in the lowest level of the hierarchy for m.

6.3 Synthetic data: nonlinear SDE solution

We use a similar setup as above to generate a synthetic dataset, this time using a
nonlinear CDE. We use the same model as [Lia+19, Example 5.1]:

dYt = (−πYt + sin(πt))dX
(1)
t + YtdX

(2)
t , Y0 = 0.

Taking X
(1)
t = t,X

(2)
t = Wt for Wt a Brownian motion, then this is an SDE, which

we consider in a Stratonovich sense. Numerically, we take a piecewise linear ap-
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proximation (of length 50001) to a Brownian motion sample, and solve for the time
T = 10 solution of the CDE using Diffrax, using a time step of T

50000
(to match

[Lia+19]). We generate a dataset containing 2000 examples.

We evaluate feature sets of log signatures over an ordinary (non-hierarchical) parti-
tion for the task of predicting YT . We use the same kernel ridge regression frame-
work, as described in Section 6.1. In Figure 7 we see that the most efficient feature
set to achieve a given test R2 score tends to use truncation levels 3 or 4. The test
R2 score tends to drop after a peak, as the number of subintervals increases. This
may be partially due to overfitting, although we observed that the R2 scores on
the training set exhibit a similar, but less pronounced, peak. Figure 8 compares
splitting by equal time, equal 1-variation, and equal 2.001-variation, with the latter
being motivated by the fact that true Brownian motion sample paths almost surely
have finite p-variation if and only if p > 2. In most cases, the equal time split was
optimal.
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Figure 7: Test R2 score using log signature features over subpaths (equal time split).
For each truncation level, the number of subintervals ranges over 20, 21, . . . , 25. Only
points with a feature size under 350 are plotted.
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6.4 Detecting sleep states from accelerometer data

We now consider a dataset provided by the Child Mind Institute for a recent Kaggle
competition [Esp+23]. It consists of measurements from a wrist-worn accelerom-
eter, in a two-dimensional stream, sampled every 5 seconds over many days. The
competition task was to detect the onset and end of sleep, but we instead consider
the binary classification problem of predicting whether a given stream is taken from
an awake period or an asleep period.

We generate a small, preprocessed dataset by extracting 800 sequences of 1440
samples (2 hours) which occur fully within a sleep or an awake period and which are
at least 30 minutes away from the onset or end of sleep. Each sequence is associated
with a binary label corresponding to asleep/awake.

We consider feature sets of (non-hierarchical) log signatures over subpaths, with
either an equal time split or an equal 1-variation split. Since this is a classification
task, we use support vector machines, with a polynomial kernel, and the framework
described in Section 6.1.
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Figure 9: Test accuracy (higher is better) using log signature features over subpaths
of equal 1-variation. For each truncation level, the number of subintervals ranges
from 20, 21, . . . , 26, but only points with a total feature size under 350 are plotted.
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Figure 10: Comparison of test accuracy when features are created by splitting paths
using an equal time split vs. equal 1-variation split.

In Figure 9 we see that the most efficient feature set achieving a given test accuracy
tends to use low order log signatures (level 1 or 2). In this dataset, the paths
contain occasional large “jumps”, which results in the partitions being very different
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depending on whether the split is by equal time or equal 1-variation. Figure 10 shows
the equal 1-variation split performs significantly better.

7 Conclusions

In our analysis of error bounds for linear CDE approximation, we found that the
optimal trade-off between truncation level and number of subintervals depends on
the dimension d and the product rL of upper bounds on the vector field norm and
path length. The main trend is that for larger dimensions d, a given error bound
tends to achieved most efficiently using lower order signatures (e.g. levels 2, 3, 4)
over a number of subintervals.

We saw that the optimal way to choose the partition in order to minimise the error
bound was to split the path into sections of equal 1-variation. On the sleep state
dataset, splitting by equal 1-variation rather than equal time resulted in a signifi-
cant increase in test accuracy (Figure 10). For practitioners of the path signature
methodology, we highlight that in addition to being theoretically motivated, this
modification is easy and efficient to implement.

Our theoretical analysis has some limitations. We primarily assumed that the paths
have finite 1-variation. Also, the error bound analysis ignores the fact that in prac-
tice, the function of the feature set needs to be learned from a finite dataset. This
is highlighted by the experiment on synthetic data of linear CDE solution, which
shows both training and test performance decreasing as the number of subintervals
increases, despite these larger feature sets containing more information (Figure 5).
Future work might address this using tools from statistical learning theory.
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Appendices

A Selected code excerpts

Efficient computation of the error bound (24)

1 import math

2 from functools import cache

3

4 @cache

5 def multinomial(ks):

6 # Written by Reiner Martin:

7 # https :// stackoverflow.com/a/46378809/5791276

8 res , i = 1, sum(ks)

9 i0 = ks.index(max(ks))

10 for a in ks[:i0] + ks[i0+1:]:

11 for j in range(1,a+1):

12 res *= i

13 res //= j

14 i -= 1

15 return res

16

17 @cache

18 def exponential_tail(x, k):

19 """ Tail of series for e^x starting from k-th term."""

20 if k == 0:

21 return math.exp(x)

22 else:

23 return exponential_tail(x, k - 1) - (x ** (k - 1)) / math.factorial(k - 1)

24

25 @cache

26 def D(N, k, m):

27 """ Computes sum over multinomial coefficients , for

28 n_1 + ... + n_m = N + k, n_j <= N for all j"""

29 if m == 1:

30 if N + k <= N:

31 return 1

32 else:

33 return 0

34 total = 0

35 for n1 in range(min(N, N + k) + 1):

36 total += multinomial ((n1, N + k - n1)) * D(N, k - n1, m - 1)

37 return total

38

39 def C(N, k, m):

40 """ Sum over multinomial coefficients , for

41 n_1 + ... + n_m = N + k, n_j > N for some j"""

42 return m ** (N + k) - D(N, k, m)

43

44 @cache

45 def error_bound(N, m, rL):
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46 total = 0

47 for k in range(1, (N * m) - N + 1):

48 total += (((rL / m) ** (N + k)) * C(N, k, m) / math.factorial(N + k))

49 total += exponential_tail(rL, N * m + 1)

50 return total

Synthetic data generation using Diffrax

This example shows how the dataset for Section 6.2 is generated. The dataset for
Section 6.3 is similar.

1 import numpy as np

2 import jax.random as jr

3 import jax.numpy as jnp

4 from jax import vmap

5 import diffrax

6

7 def generate_vector_field(d, e):

8 arr = np.random.randn(e, d, e)

9 for i in range(d):

10 # Normalise so that arr[:,i,:] has operator norm 1 wrt 1-norm

11 # We do this by scaling column of the matrix arr[:,i,:] to have 1-norm

equal to 1.

12 col_sums = np.sum(np.abs(arr[:,i,:]), axis =0)

13 arr[:,i,:] /= col_sums

14 return arr

15

16 d = 2

17 e = 2

18 t0 = 0

19 t1 = 1

20 y0 = jnp.array ([0.5, 0.5])

21 V = generate_vector_field(d, e)

22 diffusion = lambda t, y, args: jnp.dot(V, y)

23 path_n_samples = 128

24 path_length = 5

25 solver_dt0 = (t1 - t0) / 100000

26 path_step_size = path_length / (path_n_samples - 1)

27

28 def get_x(prng_key):

29 key = jr.PRNGKey(prng_key)

30 possible_increments = jnp.concatenate ([jnp.eye(d), -jnp.eye(d)], axis =0)

31 steps = path_step_size * jr.choice(key , possible_increments , shape=(

path_n_samples - 1,))

32 path = jnp.cumsum(steps , axis =0)

33 path = jnp.concatenate ((jnp.zeros ((1,d)), path), axis =0)

34 return path

35

36 def get_y(prng_key):

37 path = get_x(prng_key)

38 ts = jnp.linspace(t0, t1, path_n_samples)

39 path_interp = diffrax.LinearInterpolation(ts=ts, ys=path)
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40 term = diffrax.ControlTerm(diffusion , path_interp)

41 solver = diffrax.Tsit5()

42 saveat = diffrax.SaveAt(t1=True)

43 max_steps = int((t1 - t0) / solver_dt0) + 10

44 sol = diffrax.diffeqsolve(term , solver , t0 , t1 , dt0=solver_dt0 , max_steps=

max_steps , y0=y0, saveat=saveat)

45 y1 = sol.ys

46 return y1[0]

47

48 get_xs = vmap(get_x)

49 get_ys = vmap(get_y)

50

51 # Generate dataset:

52 n_examples = 2000

53 X = get_xs(jnp.array(range(n_examples))) # X has shape (2000, 128, 2)

54 y = get_ys(jnp.array(range(n_examples))) # y has shape (2000, 2)

Generating log signature features

1

2 import numpy as np

3 import roughpy as rp

4

5 def logsig_features(path , truncation_level , n_subintervals):

6 """ Get log signature features with equal time split """

7 features = []

8 for part in np.array_split(path , n_subintervals):

9 ctx = rp.get_context(width=part.shape [1], depth=truncation_level , coeffs=rp

.DPReal)

10 stream = rp.LieIncrementStream.from_increments(np.diff(part , axis =0), ctx=

ctx)

11 logsig = stream.log_signature(depth=truncation_level)

12 features.append(np.array(logsig))

13 return np.array(features)

14

15 def p_var(path , p=1):

16 return np.power(np.sum(np.power(np.linalg.norm(np.diff(path , axis =0), axis =1),

p)), 1/p)

17

18 def cumulative_p_var(path , p=1):

19 return np.power(np.cumsum(np.power(np.linalg.norm(np.diff(path , axis =0), axis

=1), p)), 1/p)

20

21 def p_var_logsig_features(path , truncation_level , n_subintervals , p):

22 """ Get log signature features with equal p-variation split """

23 assert p >= 1

24 features = []

25 cum_p_var = cumulative_p_var(path , p=p)

26 num_points = path.shape [0]

27 max_variation = cum_p_var [-1]

28 linspace_points = np.linspace(0, max_variation , n_subintervals + 1)

29 split_idxs = [np.abs(cum_p_var - point).argmin () for point in linspace_points]
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30 split_idxs [0] = 0

31 split_idxs [-1] = num_points - 1

32 for start , end in zip(split_idxs [:-1], split_idxs [1:]):

33 if end - start <= 1:

34 # Workaround for when end == start , which can occur

35 # when there are large jumps between consecutive points.

36 end = start + 1

37 ctx = rp.get_context(width=path.shape [1], depth=truncation_level , coeffs=rp

.DPReal)

38 stream = rp.LieIncrementStream.from_increments(np.diff(path[start:end+1],

axis =0), ctx=ctx)

39 logsig = stream.log_signature(depth=truncation_level)

40 features.append(np.array(logsig))

41 return np.array(features)

42

43 # Code for generating signature (rather than log signature) features is similar.

Linear CDE experiment

Example code illustrating our experimental framework.

1 from functools import partial

2 import itertools

3 import numpy as np

4 import pandas as pd

5 from sklearn.model_selection import train_test_split , cross_val_score

6 from sklearn.preprocessing import StandardScaler

7 from sklearn.kernel_ridge import KernelRidge

8 from sklearn.metrics import r2_score , mean_absolute_error

9

10 def mean_l1_distance(y_true , y_pred):

11 return mean_absolute_error(y_true , y_pred , multioutput="raw_values").sum()

12

13 def eval_params(params , model , X, y, scoring):

14 model = model (** params)

15 cv_scores = cross_val_score(model , X, y, cv=5, scoring=scoring)

16 cv_avg_score = cv_scores.mean()

17 return cv_avg_score

18

19 def eval_kernel_ridge(X, y, hyperparams , test_size =0.25):

20 # Mean -centre the features and targets:

21 X = StandardScaler ().fit_transform(X)

22 y = StandardScaler ().fit_transform(y)

23 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=test_size ,

random_state =42)

24 # Hyperparameter search (cross -validation)

25 param_combinations = [dict(zip(hyperparams.keys(), values)) for values in

itertools.product (* hyperparams.values ())]

26 eval_params_cv = partial(eval_params , X=X_train , y=y_train , model=KernelRidge ,

scoring="neg_mean_absolute_error")

27 r2_scores = np.array([ eval_params_cv(params) for params in param_combinations ])

28 best_idx = np.argmax(r2_scores)
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29 best_params = param_combinations[best_idx]

30 # Fit model on the entire training set

31 klr = KernelRidge (** best_params)

32 klr.fit(X_train , y_train)

33 y_pred_train = klr.predict(X_train)

34 train_r2 = r2_score(y_train , y_pred_train)

35 train_mean_l1 = mean_l1_distance(y_train , y_pred_train)

36 # Predict on the test set and evaluate

37 y_pred_test = klr.predict(X_test)

38 test_r2 = r2_score(y_test , y_pred_test)

39 test_mean_l1 = mean_l1_distance(y_test , y_pred_test)

40 return train_r2 , test_r2 , train_mean_l1 , test_mean_l1 , best_params

41

42 def run_experiment(feature_fn , y, candidate_truncation_levels ,

candidate_n_intervals , hyperparams):

43 results = pd.DataFrame(

44 columns =[

45 "n_subintervals",

46 "truncation_level",

47 "feature_size",

48 "train_r2",

49 "test_r2",

50 "train_mean_l1_distance",

51 "test_mean_l1_distance",

52 ]

53 + [f"optimal_{param}" for param in hyperparams.keys()]

54 )

55 for n_subintervals in tqdm(candidate_n_intervals , desc="n_subintervals",

position =0):

56 for truncation_level in tqdm(candidate_truncation_levels , desc="

truncation_level", position=1, leave=False):

57 X_features = feature_fn(truncation_level , n_subintervals)

58 X_features = X_features.reshape(X_features.shape[0], -1)

59 feature_size = X_features.shape[-1]

60 train_r2 , test_r2 , train_mean_l1 , test_mean_l1 , best_params =

eval_kernel_ridge(X_features , y, hyperparams)

61 results.loc[len(results)] = [

62 n_subintervals ,

63 truncation_level ,

64 feature_size ,

65 round(train_r2 , 4),

66 round(test_r2 , 4),

67 round(train_mean_l1 , 4),

68 round(test_mean_l1 , 4),

69 ] + [best_params.get(param) for param in hyperparams.keys()]

70 return results

71

72 # Example experiment:

73 candidate_n_intervals = [1, 2, 4, 8, 16, 32]

74 candidate_truncaation_levels = [1, 2, 3, 4, 5]

75 hyperparams = {

76 "kernel": ["poly"],

77 "degree": [1, 2, 3, 4, 5],
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78 "alpha": [0.3, 1, 3, 10, 30],

79 }

80 results = run_experiment(

81 get_logsig_features ,

82 # get_logsig_features is a function (omitted) which generates

83 # features by stacking log signatures over subintervals

84 # (can be replaced with e.g. hierarchical signatures)

85 y,

86 candidate_truncation_levels ,

87 candidate_n_intervals , hyperparams

88 )
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